Oldd meg az alábbi exponenciális egyenleteket! Végezz ellenőrzést is!
-
42x−1 ⋅ 2x = 16x
-
42x = 1/4
-
42x = −1/4
-
33x = 0
-
05x = 0
-
74x = 1
-
9x−1 = 81 ⋅ √3
-
0,54x+8 = 16
-
(1/3)2x+6 = 81
-
10x2−4x+3 = 1
-
23x+1 = 1/4
-
10x = 0,1 ⋅ √10
-
0,53x−4 = 32
-
62x2 ⋅ 67x = 615
-
27⋅2x = 8⋅3x
-
95−2x = (1/3)2x
-
(23/42)2−x2 − 1 = 0
-
125⋅3x−1 = 3⋅5x+1
-
(2/7)3x−7 = (7/2)7x−3
-
2 ⋅ 3x+2 − 42 ⋅ 3x−1 = 12
-
2x−1 + 2x+1 = 20
-
3 ⋅ 3x+3 − 3x+2 + 3 ⋅ 3x = 25
-
23x2−1 = 4x
-
3x + 3x+2 + 3x−1 = 31/3
-
2x+3 − 2x−2 + 2x+1 = 39
-
25x + 5 = 6 ⋅ 5x
-
(2/3)x ⋅ (9/8)x = 27/64
-
9x + 6⋅3x − 27 = 0
-
55+x + 5x+6 − 8 = 142
-
2x+2 + 4x−1 = 128
-
32x−5 + 3x−2 − 3 = 33
-
5x−1 ⋅ 125x+2 = 25x+1
-
3x+2 ⋅ 9x = 27x−2
-
10x+3 ⋅ 1005+2x = 0,1x
-
102−x ⋅ 1005+2x = 0,1x
-
21+x + 2x+2 = 2x+3 − 40 + 2x−1